

Scalable Inverted Indexing on NoSQL Table Storage
Xiaoming Gao

School of Informatics and Computing, Indiana
University

201H Lindley Hall, 150 S. Woodlawn Ave.,
Bloomington, IN 47405

1-812-272-6515

gao4@indiana.edu

 Judy Qiu
School of Informatics and Computing, Indiana

University
201D Lindley Hall, 150 S. Woodlawn Ave.,

Bloomington, IN 47405
1-812-855-4856

xqiu@indiana.edu

ABSTRACT

The development of data intensive problems in recent years has

brought new requirements and challenges to storage and

computing infrastructures. Researchers are not only doing batch

loading and processing of large scale of data, but also demanding

the capabilities of incremental updates and interactive analysis.

Therefore, extending existing storage systems to handle these new

requirements becomes an important research challenge. This

paper presents our efforts on IndexedHBase, a scalable, fault-

tolerant, and indexed NoSQL table storage system that can satisfy

these emerging requirement in an integrated way. IndexedHBase

is an extension of the cloud storage system HBase. Modeled after

Google's BigTable, HBase supports reliable storage and efficient

access to terabytes or even petabytes of structured data. However,

it does not have an inherent mechanism for searching field values,

especially full-text field values. IndexedHBase solves this issue

by adding support for an inverted index to HBase, and storing the

index data with HBase tables. Leveraging the distributed

architecture of HBase, IndexedHBase can achieve reliable index

data storage, fast real-time data updating and indexing, as well as

efficient parallel data analysis using Hadoop MapReduce.

Exploiting the inverted index, IndexedHBase employs three

different searching strategies to support interactive data analysis.

In order to evaluate IndexedHBase in large scale HPC systems,

we extend the MyHadoop framework and provide MyHBase,

which can dynamically build a one-click HBase deployment in an

HPC job, and automatically finish related tasks. We test the

performance of IndexedHBase with the ClueWeb09 Category B

data set on 101 nodes of the Quarry HPC cluster at Indiana

University. The performance results show that IndexedHBase not

only satisfies the requirements for fast incremental data updating,

but also supports efficient large scale batch processing over both

text and index data. Moreover, by intelligently selecting suitable

strategies, searching performance for interactive analysis can be

improved by one to two orders of magnitude.

Categories and Subject Descriptors

H.3.1 [Content analysis and Indexing]: Indexing methods – full-

text indexing in NoSQL databases.

General Terms

Algorithms, Design, Experimentation, Performance, Measurement,

Reliability.

Keywords

HBase, Inverted Index, Data Intensive Computing, Real-time

Updating, Interactive Analysis.

1. INTRODUCTION
Data intensive computing has been a major focus of scientific

computing communities in the past several years, and the

development of data intensive problems has brought new

requirements and challenges to storage and computing

infrastructures. Researchers nowadays are not only doing batch

loading and processing of big data, but also demanding

capabilities of incremental updating [] and interactive searching

and analysis [] from the data storage systems. Distinctly from

batch loading, incremental data updating handles relatively small

pieces of data, and finishes in real-time. Similarly, interactive

searching and analysis also targets a relatively small portion of

data, and requires a response time of seconds or minutes. For

example, social network researchers may want to dynamically

collect data from Twitter or Facebook and save them in real-time,

and then issue queries like "what is the age distribution of all the

people who have talked about Los Angeles Lakers in their status

in the last 6 months?", and expect to get an answer in seconds or

minutes.

While many existing systems for data intensive problems can

handle data loading and processing in large batches very well,

adding support for real-time updating and interactive analysis to

them remains a research problem. Inspired by previous

developments in the fields of information retrieval and database

technologies, we believe indexing is the key towards efficient

search and interactive analysis. Specifically, in order to create a

suitable and powerful indexing mechanism for data intensive

systems, we need to resolve the following research challenges:

(1) In case of large data size, how can we support reliable and

scalable index data storage, as well as high-performance index

access speed?

(2) How can we achieve both efficient batch index building for

existing data and fast real-time indexing for incremental data?

(3) How do we design and choose proper searching strategies that

can make good use of the indices to support interactive analysis?

(4) While functionalities of real-time updating and interactive

analysis are added, how can we retain the existing capability of

large scale data processing, and extend it to analysis over both

original data and index data?

(5) How can we evaluate our solutions for these issues with large

data sizes and on large-scale systems?

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

This paper presents our efforts towards addressing these

challenges. Our work is based on a well-known cloud storage

system, HBase []. Modeled after Google's BigTable [], HBase can

support scalable storage and efficient access to terabytes or even

petabytes of structured data. Besides, HBase is naturally

integrated with the Hadoop [] MapReduce framework, thus it can

support efficient batch analysis through large scale parallel

processing. However, it does not provide an inherent mechanism

for searching field values, especially for full-text field values.

Searching and selective analysis can only be done by scanning the

whole data set and finding the target data records, which is

obviously inefficient and not suitable for interactive analysis.

There are existing efforts about building indices to facilitate field

value search in HBase, but they either do not consider full-text

field values [], or do not have enough support for efficient batch

index building and large scale index data analysis [].

In this paper, we focus on the issue of full-text value search in

HBase, and propose to solve it by involving the usage of inverted

index. Figure 1 shows an example fragment of an inverted index.

For a given set of text documents, where each document is

composed of a set of different terms (or words), an inverted index

records for each term, the list of documents that contain it in their

text? Specifically, it contains information about the frequencies

and positions of terms in documents, as well as (in some cases)

the degree of relevance between terms and documents.

Figure 1. An example fragment of inverted index.

The inverted index technology has been widely used in

information retrieval systems for searching text data, and the most

well known implementation is the Apache Lucene library [].

However, most existing Lucene-based systems, such as Solr [],

maintain index data with files, and thus do not have a natural

integration with HBase. Therefore, we propose a novel framework

that can build inverted indices for text data in HBase, and store

inverted index data directly as HBase tables. We call this

framework IndexedHBase. Leveraging the distributed architecture

of HBase, IndexedHBase can achieve reliable and scalable index

data storage, as well as high performance for index data access.

Moreover, by choosing proper searching strategies based on

inverted indices, IndexedHBase can improve searching

performance by several orders of magnitude, and therefore

supports interactive analysis very well.

We use the ClueWeb09 Category B data set [] to test the

effectiveness and performance of IndexedHBase, and carry out

our experiments on 101 nodes of the Quarry HPC cluster [] at

Indiana University. The following sections will explain, analyze,

and verify our design and implementation choices towards solving

the abovementioned research challenges. Section 2 gives a brief

introduction about HBase. Section 3 describes the system design

and implementation of IndexedHBase. Section 4 presents and

analyzes the performance experiments of IndexedHBase in terms

of parallel index building, real-time updating, distributed index

access, and searching. Section 5 demonstrates the advantage of

IndexedHBase in parallel data analysis with a synonym mining

application. Section 6 compares IndexedHBase with related

technologies, and Section 7 has our conclusion and outlines our

future work.

2. HBASE
HBase is an open-source, distributed, column-oriented, and

sorted-map datastore modeled after Google’s BigTable. Figure 2

illustrates the data model of HBase. Data are stored in tables; each

table contains multiple rows, and a fixed number of column

families. For each row, there can be a various number of qualifiers

within each column family, and at the intersections of rows and

qualifiers are table cells. Cell contents are uninterpreted byte

arrays. Cell contents are versioned, and a table can be configured

to maintain a certain number of versions. Rows are sorted by row

keys, which are also implemented as byte arrays.

Figure 2. An example of the HBase data model.

Figure 3 shows the architecture of HBase. At any time, there can

be one working HBase master and multiple region servers running

in the system. One or more backup HBase masters can be set up to

prevent single point of failure. Apache ZooKeeper [] is used to

coordinate the activities of the master and region servers. Tables

are horizontally split into regions, and regions are assigned to

different region servers by the HBase master. Each region is

further divided vertically into stores by column families, and

stores are saved as store files in HDFS. Data replication in HDFS

and region server failover ensures high availability of table data.

Load balance is done through dynamic region splitting, and

scalability can be achieved by adding more data nodes and region

servers.

Figure 3. HBase architecture.

Based on this distributed architecture, HBase can support efficient

access to huge amounts of data, and can be considered as a good

candidate for meeting our identified requirements for supporting

data intensive applications. However, it does not provide a native

mechanism for searching field values, and thus cannot satisfy the

requirement for interactive analysis. There are existing projects

and work on building indices to facilitate field value search in

HBase, but they either do not target full-text field values, or do

not provide efficient solutions for batch index building and large

scale index data analysis. Therefore, to solve this problem, we

suggest building an inverted index for full-text data in HBase, and

storing this index data in HBase tables. The next section will

present and discuss the details about the design and

implementation of our new system IndexedHBase.

3. INDEXEDHBASE DESIGN AND

IMPLEMENTATION

3.1 Design of Table Schemas
In order to store text data and index data in HBase tables, proper

table schemas are needed. Figure 4 illustrates major table schemas

in IndexedHBase. Since the ClueWeb09 data set is composed of

HTML web pages crawled from the Internet, we design the first

table schema in Figure 4 to store the text contents of these web

pages. For convenience of expression, we also call these web

pages "documents". This table is named "CW09DataTable". Each

row in the table contains data of one document, and the row key is

a unique document ID. There is only one column family in this

table, named "details". Each row has two columns in this column

family. The "URI" column records the URI of each web page, and

the "content" column contains the text data extracted from its

HTML content.

Figure 4. Major table schemas in IndexedHBase.

Inverted indices normally contain two types of information about

terms' appearances in documents: their frequencies and positions.

Correspondingly, we design two table schemas to store them in

IndexedHBase, as illustrated by the second and third schema in

Figure 4. Term values are used as row keys in both schemas, so

each row contains inverted index information for one unique term.

The CW09FreqTable contains one column family named

"frequencies". Under this column family, each row has a different

number of columns. Each column records one document

containing the corresponding term as specified by the row key: the

column name is the document ID, and the cell value is the

frequency of that term in that document. The CW09PosVecTable

also contains only one column family, named "positions". The

columns for each row in this table are similar to CW09FreqTable;

the only difference is that the cell values are vectors that record

terms' positions in documents, instead of frequencies.

Using these tables to store index data brings the following

advantages to IndexedHBase:

(1) Leveraging the distributed architecture of HBase,

IndexedHBase can provide high availability for index data storage,

and high performance for distributed index data access. Our

performance evaluations in section 4 will verify this expectation.

(2) Although the information in CW09FreqTable can be totally

reconstructed by scanning the CW09PosVecTable, we are still

keeping a separate table for it. This is because these two tables

may be needed in different searching context or data analysis

applications. As will be demonstrated in section 5, in many cases

only the frequencies information is needed. Since the row size of

CW09PosVecTable is mostly much larger than CW09FreqTable,

keeping a separate CW09FreqTable can help reduce the size of

data transmission by a large portion.

(3) Since rows are sorted by row keys in HBase, it is easy to do a

complete range scan of terms in index tables. This can be very

helpful for evaluating queries containing wild characters, such as

"ab*". Besides, since the qualifiers (document IDs) in each row

are also sorted internally by HBase, it is easy to merge the index

records for multiple terms.

(4) Since HBase is designed for efficient random access to cell

data in tables, IndexedHBase can support very fast real-time

document updates. The insertion, update, or deletion of a

document only involves random write operations to a limited

number of rows in these tables, and has little impact on the overall

system performance, because HBase supports atomic operations at

row level. According to our performance tests in section 4, real-

time document updates can be completed at the level of

milliseconds. Therefore, although temporary data inconsistency

can happen during a document update, eventual consistency can

be guaranteed within a very short time window.

(5) Based on the original support for Hadoop MapReduce in

HBase, we can develop efficient parallel algorithms for building

inverted indices. Furthermore, researchers are also able to

implement MapReduce applications to complete large scale

analysis using both text data and index data.

These advantages of IndexedHBase can help address research

challenges (1), (2), and (4) as discussed in section 1.

3.2 System Workflow and Experiments
To testify the effectiveness and efficiency of IndexedHBase, we

need to carry out a series of experiments on a large enough test

bed and with a large enough data set. Moreover, we need a

experimental environment where we can flexibly change testing

parameters such as scale of system and data, number of clients,

etc. Considering these factors, we choose to use the Quarry HPC

cluster at Indiana University to launch our experiments. Since

resource allocations in Quarry are completed at the level of HPC

jobs, we need to organize our experiments into a proper workflow

within a job, as illustrated in Figure 5.

After getting the required resources, the first task is to create a

dynamic HBase deployment on the allocated nodes. We modify

the MyHadoop [] software to implement this task. MyHadoop is a

software package that can be used to dynamically construct a

distributed Hadoop deployment in an HPC environment. It is

mainly composed of two parts: a set of template Hadoop

configuration files, and a set of scripts working with HPC job

systems, which apply for HPC nodes, configure nodes as Hadoop

masters and slaves, start Hadoop daemon processes on these

nodes, and then launch MapReduce jobs on the constructed

Hadoop system. The flow chart of the MyHadoop scripts is shown

at the left side of Figure 6. We add template configuration files for

HBase to MyHadoop, and then add operations in the scripts for

configuring ZooKeeper, HBase master and region servers, and for

starting HBase daemon processes and applications. We call our

modified MyHadoop package "MyHBase", and the flow chart is

shown at the right side of Figure 6.

Figure 5. System workflow of IndexedHBase experiments.

Figure 6. MyHadoop and MyHBase.

After the first task in the workflow is completed, HBase and

Hadoop will be running and available for data storage and

MapReduce job execution. The second task is a MapReduce

program that loads data from the ClueWeb09 Category B data set

to CW09DataTable in HBase. The ClueWeb09 data set is

originally stored in the form of multiple .warc.gz files, so this

program first splits all these files into different groups, then

assigns these groups to a set of mapper tasks. Each mapper will

read HTML web pages from the files of its groups, and then

output HBase "Put" objects for each page, which will then be

handled by HBase and inserted as rows to CW09DataTable.

After data are loaded to CW09DataTable, they can be used in two

ways. On one hand, we can run MapReduce programs to generate

CW09FreqTable and CW09PosVecTable, which will be accessed

and tested in a series of performance evaluation experiments. On

the other hand, text data in CW09DataTable and index data in

CW09FreqTable and CW09PosVecTable can both be useful in

various data analysis applications, such as the LC-IR synonym

mining analysis [] in our workflow. Implementation of the index

building program will be presented in section 3.3; details about

the LC-IR synonym mining analysis will be discussed in section 5.

Our system workflow and tasks design address the research

challenge (5) as mentioned in section 1.

3.3 Implementation of the Inverted Index

Building Task

3.3.1 Overall Index Building Strategy
The index building task in the work flow takes the documents in

CW09DataTable as input, builds inverted index for them, and

then stores index data into CW09FreqTable and

CW09PosVecTable. We use the HBase bulk loading strategy to

finish this process, because this is the most efficient way to load

data into HBase tables in large batches. The whole process

consists of the following two steps:

(1) Run a MapReduce program to scan CW09DataTable, build

inverted index for all documents, and write index data to HDFS

files in the HFile format, which is the file format HBase internally

uses to store table data in HDFS.

(2) Import the HDFS files generated in step (1) to

CW09FreqTable or CW09PosVecTable using the

"CompleteBulkLoad" tool provided by HBase.

Step (2) normally finishes very fast (in seconds), and the major

work is done in step (1). For step (1), we build two MapReduce

programs to separately generate data for CW09FreqTable and

CW09PosVecTable. This section only explains the

implementation of the program for CW09FreqTable, and the

implementation for CW09PosVecTable is similar.

3.3.2 HFile Format
Since the MapReduce index building program generates HFiles as

output, we need to give a briefly description to the HFile format

first. Figure 7 illustrates the HFile format. As described in section

2, one HFile contains data for one column family in one region of

a table. The major part of an HFile is composed of (key, value)

pairs. A key is composed of four components: row key, column

family, qualifier, and timestamp; it defines a specific position with

an HBase table. A value is just the cell value at the specified

position. All (key, value) pairs in an HFile are sorted in ascendant

order by the combination of (row key, column family, qualifier,

timestamp). In the Java implementation of HBase, (key, value)

pairs are represented as objects of the KeyValue class.

Figure 7. HFile format [].

3.3.3 Implementation of the MapReduce index

building program
Before the Mapreduce index building program is launched,

CW09FreqTable is created with a predefined number of regions,

each having a different row key boundary. The MapReduce job is

then configured with these regions' information, so that the job

will launch the same number of reducers, each generating the

HFile for one region. To generate qualified HFiles, reducers

output sorted KeyValue objects, and rely on the

HFileOutputFormat class to write them into correctly formatted

HFiles.

The execution of the whole MapReduce job is illustrated in Figure

8. Inspired by Lin's work on Ivory [], our index building algorithm

also relies on the Hadoop MapReduce framework to sort the

KeyValue objects during the shuffling phase.

Figure 8. MapReduce job execution for index building.

After the job starts, it launches multiple mapper tasks; each

mapper is responsible for building inverted index for the

documents in one region of CW09DataTable. Each row in the

table is given as one (key, value) input to the mapper, where the

key is a document ID and the value contains the text content of

the document. The mapper will process the text of the document,

count the frequency of each unique term, and generate one index

record for each term as a KeyValue object. These KeyValue

objects will then be partitioned by a total order partitioner, so that

each partition will contain the right set of KeyValue objects for

one reducer. The MapReduce framework will then sort these

KeyValue objects, and give them to reducers as input. Each

reducer will simply pass these sorted KeyValue objects to the

HFileOutputFormat, which will write them to the corresponding

HFiles for each region of CW09FreqTable. The pseudo codes for

the mapper and reducer classes are given in Figure 9.

Figure 9. Mapper and reducer implementation for index

building program.

Our efforts on the inverted index building task also address the

research challenge (2) as mentioned in section 1. The solution for

challenge (3) will be presented and analyzed in subsection 4.5 of

the next section.

4. PERFORMANCE EVALUATIONS

4.1 Testing Environment Configuration
We use the ClueWeb09 Category B data set to test the

performance of IndexedHBase in various aspects, including

parallel index building, real-time document updating and indexing,

index data access, and searching. The whole data set contains

about 50 million web pages; its size is 232GB in compressed form,

and about 1.5TB after decompression. Data are stored as files in

gzip-compressed Web Archive (WARC) file format, so each file

has an extension name of ".warc.gz".

We use 101 nodes in the Quarry HPC cluster of Indiana

University to carry out our experiments, and the data set is

initially stored in the Data Capacitor (Lustre) file system that is

mounted to Quarry. We use a major part of the data set (about

93%) for batch data loading and index building tests, and the rest

for real-time document updating and indexing tests.

Each node in the testing cluster has two Intel(R) Xeon(R) quad-

core E5410 CPUs at 2.33GHz, 16GB memory, and about 85GB

local disk storage under the /tmp directory. Each node has two

1GB Ethernet adapters, and all nodes are connected to the same

LAN. The operating system running on each node is Red Hat

Linux version 6 (RHEL 6), and we use Java 1.6, Hadoop 1.0.4,

HBase 0.94.2, and MyHadoop 0.2a in our tests. Among the 101

nodes, one is used to run HDFS name node and Hadoop job

tracker, one is used to run HBase master, and three are used to

build a ZooKeeper quorum; the other 96 nodes are used to run

HDFS data nodes and HBase region servers. In HDFS, each data

node uses a sub-directory under /tmp as the local storage location.

In HBase, gzip is used to compress data for all tables. The parallel

index building tests are launched at the scale of 48, 72, and 96

data nodes to measure the scalability of the index building

program. All the other tests are done with 96 data nodes. To avoid

contention to local disk and memory, we set the maximum

number of mappers and reducers to 4 and 2 on each data node.

4.2 Index Building Performance Test
This test measures the performance and scalability of our parallel

index building algorithm. Figure 10 shows the time used for

building CW09FreqTable at different cluster sizes, and the results

for CW09PosVecTable are similar. In case of 96 data nodes, it

takes about 68 minutes to load data into CW09DataTable, and 181

minutes to build the inverted index. So the index building time is

only 2.66 times of the data loading time. Besides, our index

building performance is also comparable to the performance of

Ivory's index building program as reported in []. Considering the

overhead of table operation handling, (key, value) pair sorting,

and data replication from HBase, our index building algorithm

proves to be very efficient in building inverted indices for text

data stored in HBase. Moreover, the index building time gets

shorter as the number of nodes in the cluster increases, and we get

a nice speed up of 1.76 when the cluster size is doubled. This

indicates that our index building program is scalable, and

IndexedHBase can easily accommodate larger data sets by having

more resources.

Figure 10. Parallel index building performance at different

cluster sizes.

After the inverted index tables are built, some interesting

characteristics about the index data are discovered. For example,

one interesting feature is the document count of each indexed term,

which means the number of documents containing each term. For

the whole data set, a total number of 114,230,541 unique terms

are indexed. However, 73,705,898 (64.5%) of them appear in only

one document. Only 14,737 (0.01%) of them appear in more than

10,000 documents. Figure 11 illustrates the logarithmic

distribution of document count for terms appearing in less than

10,000 documents, and Figure 12 shows the distribution of

document count for all other terms. As will be demonstrated in

section 4.5, this distribution is very useful for completing efficient

searches.

Figure 11. Logarithmic distribution of document count for

indexed terms appearing in less than 10,000 documents.

Figure 12. Distribution of document count for indexed terms

appearing in more than 10,000 documents.

4.3 Real-time Document Updating and

Indexing Test
The update test is done after the major part of the data set is

loaded and indexed, and it measures the real-time document

updating and indexing performance of IndexedHBase in practical

situations where the system already has some preloaded data and

multiple clients are concurrently updating and indexing

documents in real-time. In this test, multiple clients are started

concurrently on different nodes, and each client intensively

processes all the documents of one .warc.gz file. For each

document in the file, the client first inserts it into CW09DataTable,

then creates inverted index records for all terms in the document,

and finally inserts these records into CW09FreqTable. We vary

the number of concurrent clients from 1 to 32, and measure the

aggregate and per-client performance in each case.

Figure 13 shows the variation of average number of documents

processed per second (Docs/s) by each client, and Figure 14

shows the system aggregate performance in this regard. Figure 15

shows the variation of aggregate throughput in KB/s. We can see

that as the number of concurrent clients increase, per-client

performance drops because of intensive concurrent write

operations to HBase, but the aggregate system throughput and

number of documents processed per second still increases sub-

linearly. Even in the case of 32 distributed clients, it takes only

50ms for a client to insert and index one document. This proves

that IndexedHBase can support dynamic real-time data updates

from multiple application clients very well. Our system differs

from the "Near Real-time Search" support in systems like Solr [],

and document data and index data in IndexedHBase are persisted

to hard disks as soon as they are written into HBase tables. HBase

provides row-level atomic operations, so when a document or

index record is inserted to a table, it only affects the related row

and has little impact on the performance of the whole system.

During the update of a document, there could be temporary data

inconsistency before all index records are inserted, but eventual

consistency can be guaranteed within a time window of

milliseconds.

Figure 13. Average number of documents processed per

second by each client.

Figure 14. Aggregate number of documents processed per

second by all clients.

Figure 15. Aggregate data throughput in KB/s by all clients.

4.4 Index Data Access Test
The data access test measures random read performance to index

tables, because this is the access pattern to index data that is

relevant in most cases. In this test, we also start multiple testing

clients on different nodes concurrently, and each client will

randomly read 60000 rows from CW09FreqTable. We also

measure both per-client performance and aggregate performance

for the whole system, and the results are illustrated by Figure 16

and Figure 17. Results for CW09PosVecTable are similar.

Figure 16. Average number of index rows accessed per second

by each client.

Figure 17. Aggregate number of index rows accessed per

second by all clients.

We can observe from Figure 16 that as the number of distributed

clients increases, the per-client performance only decreases

slightly; Figure 17 shows that the aggregate number of rows

accessed per second grows almost linearly. This indicates that

IndexedHBase scales very well for distributed index access

workload, and can potentially support high volumes of search

evaluations in practice.

4.5 Searching Performance Tests
Section 4.1 to 4.4 show that IndexedHBase is efficient and

scalable in inverted index creation and access. To support efficient

search and interactive analysis, we need appropriate searching

strategies that can make good use of the inverted index. We have

designed and tested the following three different searching

strategies for full-text search:

(1) Parallel scan search (PSS). This strategy does not use index

at all and is included so we can evaluate the benefits of our new

work. To search for a given term, it starts a MapReduce program

to scan CW09DataTable with multiple mappers. Each mapper

scans one region of the table, and tries to find the given term in

the "content" column of each row. If a match is found, the row

key (i.e., document ID) will be written to output.

(2) Sequential index search (SIS). To search for a given term,

this strategy first accesses CW09FreqTable with the term as the

row key, and then for each document ID recorded in the row, it

sequentially accesses CW09DataTable to get the content of the

document, and finally writes the document ID to output.

 (3) Parallel index search (PIS). To search for a given term, this

strategy also first accesses CW09FreqTable with the term as the

row key, and gets all the document IDs recorded in the row. It

then splits these document IDs into multiple subsets, and starts a

MapReduce program to get the content of all these documents.

Each mapper in the program will take one subset of document IDs

as input, then fetch the content for each ID from the

CW09DataTable, and finally write these IDs to output.

It should be noted that all these searching strategies fetch the

content data of related documents, although they are not written

into output. So the following tests measure their performances for

getting the full document data, instead of just the document IDs.

Taking the document count distribution in Figure 11 into account,

we test the performance of all these strategies for searching 6

terms with different document counts. Table 1 presents the

information about the terms, and Table 2 records the results for

these tests. Green cells in Table 2 mark the fastest strategy for

searching each term.

Table 1. Terms used in searching performance tests

term document

count

document count / total number of

documents

all 30237276 65.31%

copyrights 4022026 9.98%

continental 435901 1.08%

youthful 64409 0.16%

pairwise 6011 0.01%

institutional 90 < 0.01%

Table 2. Performance comparison for 3 searching strategies

term PSS search

time (s)

SIS search

time (s)

PIS search

time (s)

longest /

shortest

all 2335 25208 904 28

copyrights 2365 3579 155 23

continental 2394 961 208 12

youthful 2384 282 173 14

pairwise 2427 32 50 76

institutional 2413 3 31 804

We have the following observations from Table 2 for each of the

three methods introduced above:

(1) Sequential index search is especially efficient for searching

infrequent terms. For terms appearing in a large number of

documents, it quickly becomes impractical because of the long

time spent on sequentially getting documents' content data.

(2) While parallel scan search reads document data by scanning,

parallel index search reads document data by random access.

Although scanning is much faster than random access in HBase,

the performance of parallel scan search is still not comparable to

parallel index search, mainly due to its intensive computation for

matching the target term with the document data.

(3) Even for searching the most frequent term "all" in the whole

data set, parallel index search can complete in about 15 minutes.

This proves IndexedHBase to be a good fit for researchers'

requirement for interactive analysis.

These observations suggest that by wisely choosing the

appropriate searching strategy, IndexedHBase can save searching

time by orders of magnitude as seen in ratio of SIS and PIS (using

the inverted index) to PSS (that is the older technology), and thus

support interactive analysis very well. Furthermore, to make the

choice about searching strategies in practice, multiple factors

should be considered, including terms' document count

distribution, random access speed of HBase, number of mappers

to use in parallel scan search and parallel index search, etc.

5. EXPERIMENTS WITH LC-IR

SYNONYM MINING ANALYSIS

5.1 LC-IR Synonym Mining Analysis
Performance results in section 4.3 and 4.5 show that

IndexedHBase is efficient for real-time updates and interactive

analysis. Using the local context–information retrieval (LC-IR)

synonym mining analysis [] as an example application, this

section demonstrates the capability and efficiency of

IndexedHBase in large scale batch analysis over text and index

data. LC-IR is an algorithm for mining synonyms from large data

sets. It discovers synonyms based on analysis of words' co-

appearances in documents, and computes similarity of words

using the formula in Figure 18:

Figure 18. Similarity calculation in LC-IR synonym mining

analysis.

In this formula, Hits("w1 w2") is a function that returns the

frequency of word combination "w1 w2", which is the number of

times w1 appears exactly before w2 in all documents. Hits("w1")

is a function that returns the frequency of word "w1" in all

documents. Obviously, these kinds of information can be

generated by scanning CW09DataTable and accessing

CW09FreqTable.

5.2 A Simple LCIR Synonym Mining

Algorithm
Based on the similarity formula in Figure 11, it is straightforward

to come up with a simple algorithm for mining synonyms from

the ClueWeb09 Category B data set. This algorithm consists of

the following steps:

(1) Word pair frequency counting step. Scan CW09DataTable

with a MapReduce program, and generate a “pair count” table for

all word pairs in the documents. Here a "word pair" means two

adjacent words in any document.

(2) Synonym scoring step. Scan the “pair count” table with a

MapReduce program, and calculate similarities of word pairs.

Single word hits are calculated by first looking up each single

word in CW09FreqTable, and then adding up its frequency in

each document it appears.

(3) Synonym filtering step. Filter the word pairs with a similarity

value above a threshold, and output these. This step is actually

carried out on-the-fly by the MapReduce program in step (2).

5.3 An Optimized LCIR Synonym Mining

Algorithm
The performance of the simple algorithm of Section 5.2, turns out

poor, mainly because step (1) generates a huge number of word

pairs, which leads to a huge number of random accesses to

CW09FreqTable; moreover, since a single word may appear in

many word pairs, there is a lot of repeated calculation for the hits

of single words in step (2).

To improve this algorithm, we observe from the formula above

that similarity of (w1, w2) is non zero only if both Hits("w1 w2")

and Hits("w2 w1") are non zero. Since most word pairs appear

only in one order in a given document, we can reduce the number

of word pairs to be checked in step (2) by only generating pairs

that appear in both order in step (1). Based on this principle, we

applied the following optimizations to the simple algorithm:

Firstly, in step (1), local combiners and global reducers were

added to filter the word pairs, so that a pair (w1, w2) is generated

only if Hits("w1 w2") > 0 and Hits("w2 w1") > 0.

Secondly, before step (2) is executed, a word count table is

generated to only record the total hits of each word in the data set.

The total hits information is intensively used in step (2), and

addition of this table not only makes access to such information

faster, but also eliminates the unnecessary total hits recalculation

in the simple algorithm. Furthermore, since a large portion of

words (40% - 50%) appear only once in all documents, we choose

not to store these words in the word count table. Therefore, if we

cannot find a word in this table, we know its frequency is 1. At the

same time, we apply a bloom filter to the word count table to

efficiently identify words that are not recorded in the table.

Finally, in the synonym scoring step, a memory buffer is added

for storing word total hits information, so that repeated access to

the frequency of the same word can be completed in local

memory.

Figure 19 and Figure 20 illustrate the performance comparison

between the naive algorithm and the optimized algorithm on two

sample data sets. It is clear that the optimizations improved the

performance of both step (1) and step (2). Moreover, the

improvement is more significant for larger data sets. The number

for the synonym scoring step before optimizations in the 408454

data set is not available because it ran for more than 11 hours,

which caused our job to be killed because of wall time limit.

Figure 19. Synonym mining performance comparison for

sample data set with 14641 documents.

Figure 20. Synonym mining performance comparison for

sample data set with 408454 documents.

With the optimized algorithm, we were able to efficiently

complete the LC-IR synonym mining analysis over the whole data

set. In a configuration with 48 data nodes, step (1) finished in 4

hours and 42 minutes, and step (2) finished in 1 hour and 42

minutes. Setting similarity threshold to 0.1, we were able to find

many unusual synonyms that do not even appear in traditional

vocabulary. Table 3 shows some example synonyms from our

results. In summary, our synonym mining experiments

demonstrate that with the right storage and access solution,

inverted index data can be useful for not only search, but also

large scale data intensive analysis.

Table 3. Example synonyms mined

synonyms synonym

score

meaning

ablepharie,

ablephary

0.17 German and English words

for the same eye disease

AbsoftProFortran,

PGIFortran

0.11 two fortran compilers

abzuyian, bzypian 0.5 two dialects of the

Abkhazian language

acamposate,

acomposate

0.14 two drugs for curing

alcoholism

accessLinkId,

idAccessLink

0.13 variable names meaning the

same thing

6. RELATED TECHNOLOGIES
Existing technologies similar or related to our project fall into

three categories: search oriented systems, analysis oriented

systems, and hybrid systems that support both search and data

analysis to a certain degree. Table 4 presents a brief comparison

between many of these systems and IndexedHBase on some major

features. Due to space limit, we use the acronym "PBC" to

represent "possible but complicated". The following subsections

will the differences in detail.

Table 4. A brief comparison between related technologies and

IndexedHBase

 Type System

inverted

index

storage

MapReduce

over text

data

MapReduce

over index

data

Search

Oriented

Solr File No No

Elastic

Search
File No No

Katta File No No

HIndex File Yes PBC

Ivory File No PBC

Analysis

Oriented

Pig N/A Yes N/A

Hive N/A Yes N/A

Hybrid

MongoDB File Yes No

Solandra Table Yes PBC

Indexed

HBase
Table Yes Yes

(PBC: possible but complicated)

6.1 Search Oriented Systems

6.1.1 Lucene, Solr, ElasticSearch, and Katta
Apache Lucene [] is a high-performance text search engine library

written in Java. It can be used to build full-text indices for large

sets of documents. The indices store information on terms

appearing within documents, including the positions of terms in

documents, the degree of relevance between documents and terms,

etc. Lucene supports various features such as incremental

indexing, document scoring, and multi-index search with merged

results. The Lucene library is employed as a core component in

many commercial document storing and searching systems,

including Solr, Katta, ElasticSearch, etc.

Solr [] is a widely used enterprise level Lucene index system.

Besides the functionality provided by Lucene, Solr offers an

extended set of features, including query language extension,

various document formats such as JSON and XML, etc. It also

supports distributed indexing by its SolrCloud technique. With

SolrCloud, the index data are split into shards and hosted on

different servers in a cluster. Requests are distributed among shard

servers, and shards can be replicated to achieve high availability.

Katta [] is an open-source distributed search system that supports

two types of indices: Lucene indices and Hadoop mapfiles. A

Katta deployment contains a master server and a set of content

servers. The index data are also split into shards and stored on

content servers, while the master server manages nodes and shard

assignment.

ElasticSearch [] is another open-source distributed Lucene index

system. It provides a RESTful service interface, and uses a JSON

document format. In a distributed ElasticSearch deployment, the

index data are also cut into shards and assigned to different data

nodes. Furthermore, there is not a node in a master role; all nodes

are equal data nodes and each node can accept a request from a

client, find the right data node to process the request, and finally

forward the results back to the client.

IndexedHBase differs from SolrCloud, Katta, and ElasticSearch in

two respects. Firstly, these systems all manage index shards with

files and thus do not have a natural integration with HBase. While

each of these systems has its own architecture and data

management mechanisms, IndexedHBase leverages the

distributed architecture of HBase to achieve load balance, high

availability and scalability, and concentrates on choosing the right

index table designs for excellent searching performance.

Secondly, these systems are oriented towards document storage

and search, but not designed for completing large scale data

analysis. In comparison, IndexedHBase not only works for

efficient search of document data, but also supports large scale

parallel analysis over both text and index data based on the

MapReduce framework of Hadoop.

6.1.2 HIndex
HIndex [] is also a project that tries to leverage HBase to build

distributed inverted index. While the general concept of HIndex is

similar to IndexedHBase, it differs in the following major aspects:

Firstly, while IndexedHBase uses HBase as an underlying storage

layer and stores index data directly in HBase tables, HIndex

modifies the implementation of HBase and maintains inverted

index directly with a modified version of HBase region server.

This introduces more complexity in terms of system consistency

and fault tolerance.

Secondly, document data updates and index data updates are

logically coupled in HIndex. Each region server maintains index

data for a certain range of document IDs, and whenever a

document is inserted, it is indexed by the corresponding region

server. Therefore, HIndex is suitable for real-time document

insertion and updates, but it is hard to build indices in batches for

document data that already exist in HBase tables. Besides, HIndex

partitions index data by document IDs, while index data in

IndexedHBase are partitioned by terms, since the index tables are

using terms as row keys.

Finally, HIndex builds inverted index using the Lucene library,

and stores index data as files in Hadoop Distributed File System

(HDFS). Therefore, it is also possible to process index data with

Hadoop MapReduce in HIndex, but a certain amount of

preprocessing and proper input format implementation are

necessary. On the other hand, doing parallel analysis over index

data with MapReduce is straightforward in IndexedHBase, since

index data are directly stored in HBase tables.

6.1.3 Ivory
Ivory [] is an information retrieval system developed by Lin's

group at University of Maryland. Ivory uses HDFS to store

document and index data, and integrates an information retrieval

layer by running "Retrieval Broker" and "Partition Servers"

directly as MapReduce jobs on Hadoop. Ivory also uses Hadoop

MapReduce to build inverted indices, but it differs from

IndexedHBase in two major aspects. Firstly, Ivory stores both

document and index data as files on HDFS, and completes index

building in batches with MapReduce jobs. It does not consider

real-time document insertion and indexing as a requirement.

Secondly, Ivory focuses on information retrieval, and does not

take data analysis as a major concern. Doing parallel analysis over

document and index data with MapReduce is possible in Ivory,

but not as straightforward and flexible as in IndexedHBase, since

it takes some extra effort and configuration to deal with its

specific file formats.

6.2 Analysis Oriented Systems

6.2.1 Pig and Hive
Pig [] is a platform for analyzing large data sets that consists of a

high-level language for expressing data analysis programs, and an

infrastructure for evaluating these programs. With its "Pig Latin"

language, users can specify a sequence of data operations such as

merging data sets, filtering them, and applying functions to

records or groups of records. This provides ease of programming

and also provides optimization opportunities.

Hive [] is a data warehouse system for Hadoop that facilitates

easy data summarization, ad-hoc queries, and the analysis of large

datasets stored in Hadoop compatible file systems. Hive also

provides a language, HiveQL, for data operations, which closely

resembles SQL.

Pig and Hive are mainly designed for batched data analysis on

large datasets. Pig Latin and HiveQL both have operators that

complete searches, but searching is mainly done by scanning the

dataset with a MapReduce program and selecting the data of

interests. Hive started to support indexing in its later versions, but

not including inverted indices for full-text search. In comparison,

IndexedHBase not only supports batched analysis via

MapReduce, but also provides an interactive way of searching

full-text data in real-time based on use of inverted indices.

6.3 Hybrid Systems

6.3.1 MongoDB
MongoDB [] is an open-source document-oriented NoSQL

database. It stores structured data in BSON format, a file format

similar to JSON with dynamic schemas, and can also be used as a

file system. MongoDB supports index on all kinds of document

fields, including inverted index on full-text field values, and can

evaluate multiple types queries, such as range queries and regular

expression queries. MongoDB implements its own data

replication and sharding mechanisms to achieve high data

availability, scalability, and load balancing. MongoDB also

supports MapReduce for batch processing and aggregation

operations, with map and reduce functions written in JavaScript.

Compared to IndexedHBase, MongoDB is similar in that it also

works as a NoSQL database, and supports inverted index and

search for full text data. The difference is that MongoDB stores

inverted index data in as files instead of tables, and does not

support batch processing over the index data with MapReduce

jobs. MapReduce in MongoDB aims mainly at aggregation

operations, and is not as expressive and rich as Hadoop

MapReduce. For example, there is no way for a map function

written in JavaScript to directly access the index data in

MongoDB, which is necessary in our LC-IR synonym mining

analysis.

6.3.2 Cassandra and Solandra
Cassandra [] is another open-source NoSQL database system

modeled after BigTable. Differently from HBase, Cassandra is

built on a peer-to-peer architecture with no master nodes, and

manages table data storage by itself, instead of relying on an

underlying distributed file system.

Solandra [] is a Cassandra-based inverted index system for

supporting real-time searches. The implementation of Solandra is

an integration of Solr and Cassandra. It inherits the

IndexSearcher, IndexReader, and IndexWriter of Solr, and uses

Cassandra as the storage backend. Although Solandra is similar to

IndexedHBase in that it also stores index data in tables (in

Cassandra), it is different in the following ways:

Firstly, the table schemas used by Solandra are different from

IndexedHBase. Similar to Solr, Solandra splits documents into

different shards, and the row key of the index table in Solandra is

a combination of shard ID, field name, and term value. Therefore,

the index data storage is partitioned not only by term, but also by

shard ID and field name. Besides, Solandra stores term frequency

information and term position vectors in the same table. This may

lead to unnecessary data transmission in cases where position

vectors are not needed for completing searches.

Secondly, since HBase supports efficient range scan of rows, it is

easy to finish range scan of terms in IndexedHBase. In contrast,

range scan of rows is not supported very well in Cassandra. As a

result, Solandra has to rely on an extra term list table to complete

range scan of terms, which is not as efficient as in HBase.

Finally, Cassandra started to integrate with Hadoop MapReduce

in its later versions, but the implementation is still not mature

enough and the related configuration is not as straightforward as

in HBase. Therefore, doing parallel analysis over document and

index data in Solandra is not as convenient and efficient as in

IndexedHBase.

7. CONCLUSIONS AND FUTURE WORK
The development of data intensive problems in recent years has

brought new requirements and challenges from researchers to

storage and computing infrastructures, including incremental data

updates and interactive data analysis. In order to satisfy these

emerging requirements, it is necessary to add proper indexing

mechanisms and searching strategies to existing data intensive

storage solutions. Moreover, after the addition of these new

capabilities, the storage system should still be able to support

large scale analysis over both original and index data.

This paper presents our work on IndexedHBase, a scalable, fault-

tolerant, and indexed NoSQL table storage system, that addresses

these research challenges. In order to support efficient search and

interactive analysis, IndexedHBase builds inverted indices for

HBase table data, and uses a combination of multiple searching

strategies to accelerate the searching process. Moreover, by

storing inverted indices as HBase tables, IndexedHBase achieves

several advantages, including reliable and scalable index data

storage, efficient index building mechanisms for both batch

loading and incremental updating, as well as support for large

scale parallel analysis over both original and index data.

Performance evaluations show that IndexedHBase is efficient and

scalable in batch index building, real-time data updating and real-

indexing, and random index data access. Furthermore, by

choosing the appropriate optimized searching strategies,

IndexedHBase can improve the searching performance by orders

of magnitude as shown in table 2. Our experiments with the LC-

IR synonym mining analysis demonstrate that inverted index data

are not only useful for boosting search, but also valuable for

efficient large scale data analysis applications.

There are several directions that we can continue to explore in our

future work:

Firstly, our current experiments demonstrate that IndexedHBase is

efficient at the scale of 100 nodes. Based on the distributed

architecture of HBase and Hadoop, we expect IndexedHBase to

scale to a much larger size. Therefore, we plan to carry out

experiments at the level of thousands of nodes in the future to

further verify the scalability of IndexedHBase.

Secondly, our results in section 4.4 suggest that in order to choose

the right searching strategy, multiple factors about the searched

term and system environment should be considered. As part of our

future work, we will try to build a searching mechanism that can

take all these factors into account and make dynamic choices of

optimal search strategies to get the best searching performance.

Finally, our current searching strategies can only handle queries as

simple combinations of terms. So another major concern in our

future work is to develop a distributed search engine that can

handle more complicated queries by making and executing

distributed query evaluation plans.

8. REFERENCES
[1] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.

Reasoning about naming systems. ACM Trans. Program.

Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=

http://doi.acm.org/10.1145/161468.16147.

[2] Ding, W. and Marchionini, G. 1997. A Study on Video

Browsing Strategies. Technical Report. University of

Maryland at College Park.

[3] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new

device for three-dimensional input. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (The Hague, The Netherlands, April 01 - 06, 2000).

CHI '00. ACM, New York, NY, 526-531. DOI=

http://doi.acm.org/10.1145/332040.332491.

[4] Tavel, P. 2007. Modeling and Simulation Design. AK Peters

Ltd., Natick, MA.

[5] Sannella, M. J. 1994. Constraint Satisfaction and Debugging

for Interactive User Interfaces. Doctoral Thesis. UMI Order

Number: UMI Order No. GAX95-09398., University of

Washington.

[6] Forman, G. 2003. An extensive empirical study of feature

selection metrics for text classification. J. Mach. Learn. Res.

3 (Mar. 2003), 1289-1305.

[7] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE. In

Proceedings of the 16th Annual ACM Symposium on User

Interface Software and Technology (Vancouver, Canada,

November 02 - 05, 2003). UIST '03. ACM, New York, NY,

http://doi.acm.org/10.1145/161468.16147
http://doi.acm.org/10.1145/332040.332491

1-10. DOI= http://doi.acm.org/10.1145/964696.964697.

[8] Yu, Y. T. and Lau, M. F. 2006. A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions. J. Syst. Softw. 79, 5 (May. 2006), 577-590. DOI=

http://dx.doi.org/10.1016/j.jss.2005.05.030.

[9] Spector, A. Z. 1989. Achieving application requirements. In

Distributed Systems, S. Mullender, Ed. ACM Press Frontier

Series. ACM, New York, NY, 19-33. DOI=

http://doi.acm.org/10.1145/90417.90738.

http://doi.acm.org/10.1145/964696.964697
http://dx.doi.org/10.1016/j.jss.2005.05.030
http://doi.acm.org/10.1145/90417.90738

